Lecture 04:
First-Order Logic

Part 1 of 2

Announcements

 Round 2 of problem set matchmaking opens today!

« We’re pleased to announce Kaia Li will be our Head TA
for the course!

Kaia Li
Head TA

Recap from Last Time

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

-» A T = Vv 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

-» A T = Vv 1 e

implication (“if P, then Q")

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- A T = Vv 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- A T = Vv 1 e

conjunction (“P and Q”)

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- A T = v 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- A T = v 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- A T = v 1 e

negation (“not P”)

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1l o

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1l o

disjunction (“P or Q")

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- A T = v 1L -

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- A T = v 1L -

falsity

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

biconditional (“P if and only if Q")

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

P—(q I

Answer at

— —] T O
— T 4 TQ

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

negation
of p - q?

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

negation
P~ (d of p - q?

Answer at

— —] T O
— T 4 TQ

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Negation of
p—q

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Negation of
p—q

Recap So Far

A propositional variable is a variable that is either
true or false.

 The propositional connectives are as follows:

- AN T = Vv 1 e

Negation of
p—q

Operator Precedence

« How do we parse this statement?
X ->yYVZoXVYAZ
* Operator precedence for propositional logic:

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
X ->yYVZoXVYAZ
* Operator precedence for propositional logic:

— binds to whatever
immediately follows it

» All operators are right-associative.
 We can use parentheses to disambiguate.

Operator Precedence

« How do we parse this statement?
X ->yYVZoXVYAZ

* Operator precedence for propositional logic:

A and v bind
more tightly than -

» All operators are right-associative.
 We can use parentheses to disambiguate.

Why All This Matters

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X+y=10-x=38vy=8

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"

X<8AYy<8-x+y=10

Why All This Matters

 Suppose we want to prove the following
statement:

“If x+y=106,thenx =8 ory = 8"
X<8AYy<8-x+y=10

“If x<8andy< §,thenx + y = 16"

New Stuff!

First-Order Logic

What is First-Order Logic?

» First-order logic is a logical system for
reasoning about properties of objects.

 Augments the logical connectives from
propositional logic with

 predicates that describe properties of
objects,

* functions that map objects to one another,
and

 quantifiers that allow us to reason about
multiple objects.

Some Examples

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)

You, Eggs You, Tomato You, Shakshuka
You, History You, History

MyHeart, Havana Him, Me, EastAtlanta

You, Eggs You, Tomato You, Shakshuka
You, History You, History

MyHeart, Havana Him, Me, EastAtlanta

These blue ferms are called
constant symbols, Unlike
proposifional variables, they
reter fo objects, not
propositions,

Likes(You, Eggs) n Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) n TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) n Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) n TookBackTo(Him, Me, EastAtlanta)

The red things that look
like function calls are called
predicates, Predicates fake

objects as arguments and
evaluate fo frue or false,

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) N Likes(You, Tomato) — Likes(You, Shakshuka)
Learns(You, History) v ForeverRepeats(You, History)

In(MyHeart, Havana) N TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives, Because each predicale
evaluates to true or false, we can

connect the fruth values of predicates

using normal propositional connectives,

Reasoning about Objects

* To reason about objects, first-order logic uses
predicates.

 Examples:
Cute(??)

Reasoning about Objects

* To reason about objects, first-order logic uses
predicates.

 Examples:

Cute(Quokka)
Arguelncessantly(Democrats, Republicans)

* Applying a predicate to arguments produces a
proposition, which is either true or false.

» Typically, when you’re working in FOL, you’ll
have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.

First-Order Formulas

 Formulas in first-order logic can be constructed
from predicates applied to objects:

Cute(a) —» Quokkal(a) v Kitty(a) v Puppy(a)
Succeeds(You) < Practices(You)

XxX<8-ox<137

— —

The less—than sign is Numbers are not ‘built
jusT another predicate. in“ fo first—order
Binary predicafes are logic. They've constant
somelimes written in symbols just like *You"
infix notation this way, and *a* above.,

Equality

* First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

* Equality is a part of first-order logic, just as —
and — are.

« Examples:
TomMarvoloRiddle = LordVoldemort
MorningStar = EveningStar

* Equality can only be applied to objects; to
state that two propositions are equal, use <.

Let's see some more examples.

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple ferms are
functions, Funclions fake
objects as input and
produce objects as outpuf,

FavoriteMovieOf(You) # FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date)
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) # FavoriteMovieOf(Date) A
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions

First-order logic allows functions that return
objects associated with other objects.

Examples:
ColorOf(Money)
MedianOf(x, y, 2)
X+y

As with predicates, functions can take in any
number of arguments, but always return a single
value.

Functions evaluate to objects, not propositions.

Objects and Propositions

 When working in first-order logic, be careful
to keep objects (actual things) and
propositions (true or false) separate.

* You cannot apply connectives to objects:
Venus — TheSun
* You cannot apply functions to propositions:
StarOf(IsRed(Sun) A IsGreen(Mars))
» Ever get confused? Just ask!

The Type-Checking Table

... operate on ... | ... and produce
Connectives " L.
(o, A, etc.) propositions a proposition
Predicates : .
(=, etc.) objects a proposition
Functions ... objects an object

One last (and major) change

Some bear is curious.

Some bear is curious.

db. (Bear(b) N Curious(b))

Some bear is curious.

db. (Bear(b) N Curious(b))

—

3 is the existential quantifier

and says ‘fhere is a choice of
b where the following is
True,”

The Existential Quantifier

A statement of the form
dx. some-formula

is true when there exists a choice object
where some-formula is true when that
object is plugged in for x.

 Examples:
dx. (Even(x) N Prime(x))
dx. (TallerThan(x, me) N WeighsLessThan(x, me))
(Fw. Will(w)) - (Ax. Way(x))

* Note the two ways of applying the 3!

The Existential Quantifier

&

dx. Smiling(x)

The Existential Quantifier

o @

dx. Smiling(x)

The Existential Quantifier

@

\ Ix. Smiling(x)

The
Exi
S
tential Qu
antifi
er

&
ne

Jx.
Smiling(x)

The Existential Quantifier

dx. Smiling(x)

The Existential Quantifier

&

dx. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier

@

Since Smiling(x)

is true for some
choice of x, this
statement
evaluates to true.

dx. Smiling(x)

The Existential Quantifier

@

Since Smiling(x)

is true for some
choice of x, this
statement
evaluates to true.

dx. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier

@ © «

dx. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier
\ Ix. Smiling(x)

The Existential Quantifier

@

dx. Smiling(x)

The Existential Quantifier

dx. Smiling(x)

The Existential Quantifier

© &

dx. Smiling(x)

The Existential Quantifier

dx. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

@

Answer at
https://cs103.stanford.edu/pollev

(Ix. Smiling(x)) = (dy. WearingHat(y))

https://cs103.stanford.edu/pollev

The Existential Quantifier

@

(Ix. Smiling(x))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x)) — (dy. WearingHat(y))

The Existential Quantifier

@

Is this part of the
statement true or
false?

(Ix. Smiling(x)) — Gy—WAearirgHato

The Existential Quantifier

@

Is this overall
statement true or
false?

(Ax. Smiling(x)) — y-—WearingHato))

The Existential Quantifier

@

Is this overall
statement true or
false?

Fun with Edge Cases

dx. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an
empty world, since nothing
exists, period!

Some Technical Details

Variables and Quantifiers

 Each quantifier has two parts:

 the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(3x. Loves(You, x)) A (3y. Loves(y, You))

Variables and Quantifiers

 Each quantifier has two parts:

 the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(3x. Loves(You, x)) A (3y. Loves(y, You))

The variable x The variable y
just lives here, just lives here,

Variables and Quantifiers

 Each quantifier has two parts:

 the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(3x. Loves(You, x)) A (3y. Loves(y, You))

Variables and Quantifiers

 Each quantifier has two parts:

 the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (Ix. Loves(x, You))

Variables and Quantifiers

 Each quantifier has two parts:

 the variable that is introduced, and
* the statement that's being quantified.

 The variable introduced is scoped just to
the statement being quantified.

(dx. Loves(You, x)) A (Ix. Loves(x, You))

The variable x A different variable,
just lives here, also named x, just
lives here.,

Operator Precedence (Again)

When writing out a formula in first-order logic,
quantifiers have precedence just below —.

The statement
dx. P(x) A R(x) N Q(x)
is parsed like this:
(Ix. P(x)) A (R(x) A Q(X))

This is syntactically invalid because the variable x is
out of scope in the back half of the formula.

To ensure that x is properly quantified, explicitly put
parentheses around the region you want to quantify:

dx. (P(x) A R(x) A Q(x))

THIS IS A LOT!!

Time out for cuteness overload.

X ‘l
;-!*3:
L~ T

-..-u-
L
‘I

Okay, back to CS103!

“For any natural number n,
n is even if and only if n? is even”

“For any natural number n,
n is even if and only if n? is even”

vn. (n € N - (Even(n) < Even(n?)))

“For any natural number n,
n is even if and only if n® is even”

Vn. (n € N - (Even(n) < Even(n?)))

‘\

V is The universal quantifier

and says ‘for all choices of n,
the tollowing is frue,*

The Universal Quantifier

A statement of the form
Vx. some-formula

is true when, for every choice of x, the statement
some-formula is true when x is plugged into it.

« Examples:

Vp. (Puppy(p) — Cute(p))
Va. (EatsPlants(a) v EatsAnimals(a))

Tallest(SultanKosen) —
Vx. (SultanKosen # x — ShorterThan(x, SultanKosen))

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

&

Since Smiling(x)
is true for every
choice of x, this

statement

evaluates to true.

The Universal Quantifier

Vx. Smiling(x)

&

Since Smiling(x)
is true for every
choice of x, this

statement

evaluates to true.

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

The Universal Quantifier

Vx. Smiling(x)

Since Smiling(x) is
false for this choice
x, this statement
evaluates to false.

The Universal Quantifier

false for this choice
x, this statement

\/ S l E) evaluates to false.

Since Smiling(x) is

The Universal Quantifier

§ at
ol T

Answer at

(Vx. Smiling(x)) = (Vy. WearmgHat(y))

https://cs103.stanford.edu/pollev

The Universal Quantifier

(Vy. WearingHat(y))

The Universal Quantifier

@ Is this part of the

statement true or
false?

(Vy. WearingHat(y))

The Universal Quantifier

@ Is this part of the

statement true or
false?

(Vy. WearingHat(y))

The Universal Quantifier

S =

(Vx. Smiling(x)) — (Vy. WearingHat(y))

Is this part of the
statement true or
false?

The Universal Quantifier

Is this part of the

statement true or
false?

Hc-Smitingbg) — (Vy. WearingHat(y))

The Universal Quantifier

@ Is this overall

statement true or
false in this
scenario?

Hc-Smitingbg) — (Vy. WearingHat(y))

The Universal Quantifier

@ Is this overall

statement true or
false in this
scenario?

(Vx. Smiling(x)) = (Vy. WearingHat(y))

Fun with Edge Cases

Vx. Smiling(x)

Fun with Edge Cases

Universally-quantified
statements are said to be
vacuously true in empty
worlds.

Vx. Smiling(x)

Translating into First-Order Logic

Translating Into Logic

» First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

* Need to take a negation? Translate your
statement into FOL, negate it, then
translate it back.

 Want to prove something by contrapositive?
Translate your implication into FOL, take
the contrapositive, then translate it back.

Translating Into Logic

 When translating from English into first-
order logic, we recommend that you

think of first-order logic as a
mathematical programming
language.

* Your goal is to learn how to combine
basic concepts (quantifiers, connectives,
etc.) together in ways that say what you
mean.

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

How would you represent this in first-order logic?

Answer at
hittps://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) dx. WearingHat(Smiling(x))

(B) dx. (Smiling(x) = WearingHat(x))
(C) dx. (Smiling(x) N WearingHat(x))
(D) dx. (Smiling(x) —» WearingHat(x))

https://cs103.stanford.edu/pollev

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) be—WearingHatSmihngod)

(B) dx. (Smiling(x) = WearingHat(x))
(C) dx. (Smiling(x) N WearingHat(x))
(D) dx. (Smiling(x) —» WearingHat(x))

https://cs103.stanford.edu/pollev

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

(A)
(B)
(C)
(D)

Which of the following are correct translations?

Elx (Smiling(x) N WearingHat(x))
dx. (Smiling(x) —» WearingHat(x))

https://cs103.stanford.edu/pollev

“Some smiling person wears a hat.”

ax. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.”

ax. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.”

ax. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.” False

ax. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x))

Ix. (Smiling(x) = WearingHat(x))

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False

Ix. (Smiling(x) = WearingHat(x))

@@
@@

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False

Ix. (Smiling(x) - WearingHat(x)) True

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False

Ix. (Smiling(x) =» WearingHat(x)) True

o

“Some smiling person wears a hat.” False

3x. (Smiling(x) AN WearingHat(x)) False
bSmngbag—WearthgHatbg) True

“Some P is a Q”

translates as

3x. (P(x) A Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

3x. (P(x) A Q(Xx))

It x is an example, it must
have property P on top of
property Q.

Using the predicates

- Smiling(x), which states that x is smiling, and
- WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

Which of the following are correct translations?

(A) Vx. (Smiling(x) A WearingHat(x))
(B) Vx. (Smiling(x) —» WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

“Every smiling person wears a hat.”

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

o =~ &

“Every smiling person wears a hat.”

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

o =~ &

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x))

Vx. (Smiling(x) —» WearingHat(x))

@@
>0 5

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) False

Vx. (Smiling(x) —» WearingHat(x))

@ @@
@ _MoT

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) False

Vx. (Smiling(x) - WearingHat(x)) True

&

“Every smiling person wears a hat.” True

Vx. (Smiling(x) A WearingHat(x)) False

Vx. (Smiling(x) - WearingHat(x)) True

&

“Every smiling person wears a hat.” True
Yo tSmihmgbagnWeartngHattay False
Vx. (Smiling(x) - WearingHat(x)) True

“All P's are Q's”

translates as

Vx. (P(x) - Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

Vx. (P(x) - Q(x))

It x is a counterexample, it
musT have property P bul
not have properTy Q.

Good Pairings

 The V quantifier usually is paired with -.

Vx. (P(x) - Q(x))

 The 1 quantifier usually is paired with A.

Ix. (P(x) A Q(x))

* In the case of V, the — connective prevents the
statement from being false when speaking about some
object you don't care about.

* In the case of 34, the A connective prevents the
statement from being true when speaking about some
object you don't care about.

Quantifiers in the Wild

@ CE!NTV/U?

tt

Next Time

o First-Order Translations
« How do we translate from English into first-order logic?
* Quantifier Orderings

 How do you select the order of quantifiers in first-order
logic formulas?

 Negating Formulas

 How do you mechanically determine the negation of a
first-order formula?

 Expressing Uniqueness

« How do we say there’s just one object of a certain type?

