

CS103CS103
Fall 2025Fall 2025

Lecture 04:
First-Order Logic
Part 1 of 2

Announcements
● Round 2 of problem set matchmaking opens today!

Kaia Li
Head TA

● We’re pleased to announce Kaia Li will be our Head TA
for the course!

Recap from Last Time

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

implication (“if P, then Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

conjunction (“P and Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

truth

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

negation (“not P”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

disjunction (“P or Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

falsity

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

biconditional (“P if and only if Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

p q p → q

T T

F F
 F T
 T F Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T

F F
 F T
 T F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T

F F
TF T
 T F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T

F F
TF T
FT F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

negation
of p → q?

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

negation
of p → q?

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

p ∧ ¬q

Negation of
p → q

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

p ∧ ¬q

T

Negation of
p → q

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

p ∧ ¬q

T
F
F

F

Negation of
p → q

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

 ¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

¬ binds to whatever
immediately follows it

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
 ∧
 ∨

→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

∧ and ∨ bind
more tightly than →

Why All This Matters

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

New Stuff!

First-Order Logic

What is First-Order Logic?
● First-order logic is a logical system for

reasoning about properties of objects.
● Augments the logical connectives from

propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifiers that allow us to reason about

multiple objects.

Some Examples

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

Reasoning about Objects
● To reason about objects, first-order logic uses

predicates.
● Examples:

Cute(??)

Reasoning about Objects
● To reason about objects, first-order logic uses

predicates.
● Examples:

Cute(Quokka)
ArgueIncessantly(Democrats, Republicans)

● Applying a predicate to arguments produces a
proposition, which is either true or false.

● Typically, when you’re working in FOL, you’ll
have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.

First-Order Formulas
● Formulas in first-order logic can be constructed

from predicates applied to objects:
Cute(a) → Quokka(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)
x < 8 → x < 137

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Equality
● First-order logic is equipped with a special

predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:
TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to

state that two propositions are equal, use ↔.

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions
● First-order logic allows functions that return

objects associated with other objects.
● Examples:

ColorOf(Money)
MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any

number of arguments, but always return a single
value.

● Functions evaluate to objects, not propositions.

Objects and Propositions
● When working in first-order logic, be careful

to keep objects (actual things) and
propositions (true or false) separate.

● You cannot apply connectives to objects:
 ⚠ Venus → TheSun ⚠

● You cannot apply functions to propositions:
 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠

● Ever get confused? Just ask!

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object

One last (and major) change

Some bear is curious.

Some bear is curious.

∃b. (Bear(b) ∧ Curious(b))

Some bear is curious.

∃b. (Bear(b) ∧ Curious(b))

∃ is the existential quantifier
and says “there is a choice of

b where the following is
true.”

The Existential Quantifier
● A statement of the form

∃x. some-formula
is true when there exists a choice object
where some-formula is true when that
object is plugged in for x.

● Examples:
∃x. (Even(x) ∧ Prime(x))
∃x. (TallerThan(x, me) ∧ WeighsLessThan(x, me))
(∃w. Will(w)) → (∃x. Way(x))

● Note the two ways of applying the ∃!

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

 ∃x. Smiling(x)

Fun with Edge Cases

 ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an

empty world, since nothing
exists, period!

Some Technical Details

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x
just lives here.

The variable y
just lives here.

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x
just lives here.

A different variable,
also named x, just

lives here.

Operator Precedence (Again)
● When writing out a formula in first-order logic,

quantifiers have precedence just below ¬.
● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)
is parsed like this:

 ⚠ (∃x. P(x)) ∧ (R(x) ∧ Q(x)) ⚠
● This is syntactically invalid because the variable x is

out of scope in the back half of the formula.
● To ensure that x is properly quantified, explicitly put

parentheses around the region you want to quantify:
∃x. (P(x) ∧ R(x) ∧ Q(x))

THIS IS A LOT!!

Time out for cuteness overload.

Okay, back to CS103!

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for all choices of n,

the following is true.”

The Universal Quantifier
● A statement of the form

∀x. some-formula
is true when, for every choice of x, the statement
some-formula is true when x is plugged into it.

● Examples:
∀p. (Puppy(p) → Cute(p))
∀a. (EatsPlants(a) ∨ EatsAnimals(a))
Tallest(SultanKösen) →

∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

 ∀x. Smiling(x)

Fun with Edge Cases

 ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified
statements are said to be
vacuously true in empty

worlds.

Translating into First-Order Logic

Translating Into Logic
● First-order logic is an excellent tool for

manipulating definitions and theorems to
learn more about them.

● Need to take a negation? Translate your
statement into FOL, negate it, then
translate it back.

● Want to prove something by contrapositive?
Translate your implication into FOL, take
the contrapositive, then translate it back.

Translating Into Logic
● When translating from English into first-

order logic, we recommend that you
think of first-order logic as a
mathematical programming

language.
● Your goal is to learn how to combine

basic concepts (quantifiers, connectives,
etc.) together in ways that say what you
mean.

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

How would you represent this in first-order logic?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) ∃x. WearingHat(Smiling(x))
(B) ∃x. (Smiling(x) = WearingHat(x))
(C) ∃x. (Smiling(x) ∧ WearingHat(x))
(D) ∃x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) ∃x. WearingHat(Smiling(x))
(B) ∃x. (Smiling(x) = WearingHat(x))
(C) ∃x. (Smiling(x) ∧ WearingHat(x))
(D) ∃x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) ∃x. WearingHat(Smiling(x))
(B) ∃x. (Smiling(x) = WearingHat(x))
(C) ∃x. (Smiling(x) ∧ WearingHat(x))
(D) ∃x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

“Some P is a Q”
translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

Which of the following are correct translations?

(A) ∀x. (Smiling(x) ∧ WearingHat(x))
(B) ∀x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True

“All P's are Q's”
translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

Good Pairings
● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the

statement from being false when speaking about some
object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking about some
object you don't care about.

Quantifiers in the Wild

theorem prover

Next Time
● First-Order Translations

● How do we translate from English into first-order logic?
● Quantifier Orderings

● How do you select the order of quantifiers in first-order
logic formulas?

● Negating Formulas
● How do you mechanically determine the negation of a

first-order formula?
● Expressing Uniqueness

● How do we say there’s just one object of a certain type?

